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v e l o p e d  i n i t i a l l y  t h r o u g h  D N P  f u n d i n s  s t  J P L  a n d  c u r r e n t l y  a l a t e d  f o r  use in t h e  M a r s  S m a r t  

L a n d e r  m i s s i o n  as an  s n a l y i s  a n d  v e r i f i c a t i o n  t o o l .  B a s e d  on t h e  J P L - d e v e l o p e d  Dshell s i m  “ l a -  

t o r .  t h e  n e e d  t o  c o n s o l i d a t e  a n d  e o m  b i n e  t o o l 8  f r o m  d i s p a r a t e  s o u r c e s  a n d  w i t h  v a r y i n g  d e g r e e s  

o f  c o m p l e t e n e s s  h a s  p r e s e n t e d  u n i q u e  c h a l l e n g e r .  T h i s  p a p e r  d i s c u s s e s  s o m e  o f  t h o a e  c h a l l e n g e s  

a n d  a n d  t h e i r  1 1 0 I ~ t i o n s .  

INTRODUCTION 
The Jet Propulsion Laboratory (JPL) is develop- 

ing a high-fidelity, real-time spacecraft simulator for 
Entry, Descent and Landing (EDL) on planetary and 
small bodies. This simulator, DSENDS (Dynamics 
Simulator for Entry, Descent and Surface landing), 
is an EDL-specific extension of the JPL Darts/Dshell 
multi-mission spacecraft dynamics and devices simula- 
tion toolkit which is in use by missions such as Cassini, 
Galileo, SIM, and Starlight. The broad scope of pos- 
sible missions for this tool requires that we maintain 
a high level of generality and flexibility in our system 
design. The first major test of the DSENDS simulator 
is in support of the Mars SmartLander mission, which 
will use DSENDS in a real-time environment (Mars- 
DSENDS). 

The DSENDS simulator interfaces with three gen- 
eral classes of tools. COTS tools such as Stethoscope, 
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daVinci, Graphviz, and Matlabs’ Simulink require 
use of a stable and standardized API. JPL internal 
tools such as the visualization programs Dview and 
Dspace, are integrated with the Dshell environment 
yet run as external processes using a coordinated, 
semi-asynchronous form of IPC. Finally, instrument, 
system component, and environmental models devel- 
oped by disparate sources within and without JPL 
each present challenges due to the need to develop a 
unique interface or wrapper that takes into account 
that they are typically mission components that are 
under development. 

Within this paper we discuss the integration and 
system engineering issues for a selection of the above 
elements into the DSENDS simulator. 

SYSTEM ENGINEERING 
Handling multiple sim configurations 

Modularization of s/c models 

0 Landings sites 

Planet data 

SPACECRAFT DYNAMICS 
The multi-mission capabilities of Darts/Dshell allow 

easy reconfiguration of DSENDS to simulate a wide 
range of spacecraft configurations. Mass properties, 
thruster sizes and thruster locations can be changed to 
reflect different design concepts. DSENDS simulations 
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Fig. 1 Confluence point dynamics 

have been created based on an early '07 prototype de- 
sign and the current SmartLander reference design. 
Even though the current reference design is in flux, 
DSENDS provides the flexibility needed to evolve with 
any changes. 

DYNAMIC SPACECRAFT RECONFIGURATION 
One significant challenge in EDL simulation is man- 

aging the transitions between the multiple phases of 
EDL, which often require a structural change in the 
simulation model to reflect new spacecraft configura- 
tions. Heat shield separation and parachute deploy- 
ment are examples of these transitions. These changes 
are conceptually simple, but require automated meth- 
ods to maintain the continuity and accuracy of the 
end-to-end simulation. Using a state machine (see sec- 
tion ), DSENDS allows dynamic reconfiguration of the 
spacecraft model and correctly propagates the old sys- 
tem state to the new model. This ability to reconfigure 
the simulation model allows DSENDS to provide vary- 
ing levels of fidelity during each phase. Integration 
step size can also be varied during the simulation, al- 
lowing the user to choose particular phases to simulate 
at  high fidelity while maintaining continuity with the 
rest of the simulation. 

TETHER DYNAMICS 
After parachute deployment, the flight train sys- 

tem includes several flexible tethers. Our tests of 
simulation methods for these tether lines are based 
on a Pathfinder-like system. This system includes a 
backshell-lander system involving three lines and a sin- 
gle confluence point (see Figure 1).  A similar system 
is used for the backshell-parachute tether line system. 

A viscc-elastic model for the individual tether line is 
used. The constraint forces imposed by the individual 
tethers dictate the motion of the confluence point. The 
high frequency dynamics of the tether lines requires a 
small integrator step size to insure stability. Although 
variable step integrators are more accurate, they do 
not provide any guarantee of timing. This can prove 
unacceptable in a real-time environment. 

Our early testing of viscc-elastic tether systems 
showed similar qualitative results for both fixed and 
variable step integrators. These qualitative behaviors 
may be adequate for general simulation. Shown in 
Figure 2 are some simulation results for a triple bridle 
system. 

Simulation speed of the variable step techniques is 
highly dependent upon the state of the tethers (see 
Figure 3). 

Variable step integrators reduce the step size when 
a tether transitions between slack and taut (between 
t = 1 and t = 5 in test plot). This provides increased 
accuracy at  the cost of simulation speed, making the 
variable step integrators slower than a fixed step near 
these transitions. However, as the system settles and 
the tether lines remain taut, a variable step integrator 
can increase the step size and achieve faster perfor- 
mance compared to a fixed step method (t i 6 in test 

The spring-damper tether models have been incor- 
porated into the DSENDS simulation. DSENDS cur- 
rently uses a fixed step integrator and requires a re- 
duction in step size when using the high fidelity tether 
models. 
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Fig. 2 
schemes. 

Tracking results for different integration 
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never intended to operate in a real-time simulation 
environment. Although these codes tend to be mono- 
lithic, it is possible to isolate the functions in these 
validated and trusted codes that are used to  compute 
aerodynamic forces and moments. These functions 
could then be imported into the DSENDS simulator, 
so long as they do not violate the real-time require- 
ment and can be hosted as a model in the DSENDS 
aerodynamic modeling architecture. 

Consequently, DSENDS had to architect the manner 
in which it models aerodynamics so that it could 1) op- 
erate in a real-time environment and 2) inherit legacy 
or validated aerodynamics models. Real-time consid- 
erations drove the aerodynamics modeling architecture 
to restrict the computational overhead of the models 
and to allow for scalable fidelity. In order to meet amulsltan 1ew 

these requirements, DSENDS aerodynamics model- 
ing architecture decomposed the aerodynamics into 
three separate models: 1) Aerodynamics Model (en- 

Fig. 3 
schemes. 

Integration effort for different integration 

capsulates the aerodynamic coefficients for the given 
aerodynamic system) , 2) Atmospheric Model (encap- 
sulates the ambient atmospheric conditions) and 3) 
Wind Model (any local wind velocity not captured in 
the Atmospheric Model. Common interfaces and func- 
tional requirements were made for these three groups 
of models so that they would correctly interoperate. 
The fidelity and computational overhead of an aero- 
dynamic model would then depend on which set of 
models were instantiated for a given DSENDS EDL 
simulation. Also, different kinds of legacy codes could 
be encapsulated one of these three types of models. 

Currently, DSENDS has the following catalog of 
models. 

Aerodynamics Models 
Fig. 4 Connectivity between aerodynamic models. 

- Linearized, Axisymmetric Aerodynamics 
- Interpolated, Axisymmetric Aerodynamics 

AERODYNAMIC MODELING 
Aerodynamic forces and moments are fundamental 

for an Entry, Descent and Landing simulator. During, 
EDL, an aerodynamic system will experience aerody- 
namic forces as it traverses from the thin outer atmo- 
sphere (governed by free molecular flows) to the atmo- 
sphere at  the landing site (governed by continuum fluid 
flows). Also, the aerodynamic system decelerates from 
hypersonic velocities (in which molecular dissociation 

on the order of minutes. Thus, the challenge for the 
DSENDS EDL simulator is how to accommodate such 
disparate flow and velocity regimes in a real-time en- 
vironment. 

Another challenge has been how to leverage existing 
aerodynamic models from legacy codes used for trajec- 
tory simulations (e.g. POST). These legacy codes are 
well suited for Monte Carlo mission analyses but were 

- Viking-based, Hypersonic Aerodynamics de- 
veloped at  LaRC (includes Mars GRAM 
3.37) 

Atmospheric Models 

- Fitted Reference Martian Atmosphere 

dominates the boundary layer) to  subsonic velocities - MWS GRAM 

Wind Models 

- Under Development 

The Viking-based hypersonic model listed above was 
intended for use in extremely high-fidelity atmospheric 
entry simulations, and was not optimized for use in a 
real-time environment, although we expected it to be 
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efficiently designed and implemented. Our integration 
and testing efforts therefore concentrated on efficient 
use of the library as well as validation of our results. 

Our preliminary tests incorporate the LaRC hyper- 
sonic model into Mars-DSENDS using and axis- 
symmetric body model. The flight path and time- 
dependent dynamic quantities (acceleration, dynamic 
pressure, etc) were compared against the preexisting 
low fidelity models previously used in DSENDS . These 
tests have been performed on hardware running a non- 
real-time OS (Solaris), and so have been used only to 
measure theoretical or relative performance. The low- 
fidelity model showed qualitatively similar results but 
did not have the frequency content of the LaRC model. 

The following sections discuss the requirements and 
implementation of the DSENDS aerodynamics model- 
ing architecture. 

AERODYNAMICS MODELING 

MODELS 
Atmospheric models are either simple mathematic 

model or a database of atmospheric properties (e.g. 
density, pressure, temperature, wind velocity, etc.) 
that vary with time. Spatial-temporal variations in 
the local atmospheric properties are due to the un- 
even, radiative heating of the planet and influence of 
the planetary terrain and consequently vary with lo- 
cal time (i.e. planetary attitude), solar longitude (Le. 
season) and with planetary latitude and longitude. 

Although terrain information may be convolved into 
an atmospheric model, no atmospheric model shall be 
expected to  produce terrain elevation. Synchroniza- 
tion between atmosphere and terrain models shall be 
done external to  the atmospheric model and is ex- 
pected to be solely through relative position of the 
aerodynamic system (i.e. latitude, longitude and 
height) with respect to a planet-centered, rotating 
frame (Le. PCR). 

Since atmospheric models are expected to be relative 
to the planetary surface, i.e. vary with latitude, lon- 

SYSTEM ENGINEERING ISSUES RELATED TO 

REQUIREMENTS FOR ATMOSPHERIC 

gitude and height above the surface, each atmospheric 
model must have access to a function or object to con- 
vert its planet-centered, rotating frame (PCR) data 
into a planet-centered, inertial frame (PCI), which 
makes the data more compatible with the rest of the 
DSENDS EDL simulation. 

As mentioned above, atmospheric models are ex- 
pected to have data that varies with solar longitude 
and local time (i.e. planetary attitude and rate) or 
some extraterrestrial equivalent of GMT. However, at- 
mospheric models shall not be expected to maintain 
such planetary attitude and rate. Therefore, plane- 
tary attitude and rate must come from some external 
object that maintains such states ( e g  a planetary 
attitude dynamics object or SPICE object). 

Atmospheric models may produce wind velocities as 
a function of the relative position of the aerodynamic 
system above the planetary surface. As mentioned 
earlier, the atmospheric model shall have access to a 
function or object to transform the wind velocities into 
a standard PCI frame. The atmospheric model must 
also correctly add the planetary rotation to wind ve- 
locity so that the inertial wind velocity represents the 
total kinetic energy of the flow field encountered by 
the aerodynamic system. 

Although there are classes of atmospheric models 
that can be modeled by a set of ODE, such models 
will not be used in DSENDS . DSENDS has a require- 
ment to be a real-time simulator and using ODEbased 
atmospheric models can easily violate that require- 
ment. Therefore, ODEbased atmospheric models can- 
not be used at  runtime within DSENDS . However, the 
spatial-temporal data produced by ODE-based atmo- 
spheric models could be an input to  some atmospheric 
model that interpolates its spatial-temporal data. In 
other words, DSENDS atmospheric models shall only 
have a functional dependence on its input, regardless 
of whether the underlying atmospheric model uses in- 
terpolated data or an algebraic equation. 

REQUIREMENTS FOR WIND MODELS 
Simple wind models are those that model the di- 

urnal and semi-diurnal cycles in the wind (due to 
diurnal solar radiative heating) as the sum of sinu- 
soidal functions in time. High fidelity wind-models in 
the atmospheric sciences use a set of spatial-temporal 

partial differential equations that are entered into an 
estimation process (i.e. Kalman Filter) where atmo- 
spheric and terrain measurements are used to refine 
the results so that a realistic wind field is produced 
with spatial-temporal variations. Many of these ef- 
fects are available in certain atmospheric models (i.e. 
Mars GRAM) with varying degrees of fidelity. It is 
for this reason that DSENDS wind models shall only 
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Fig. 6 Semi-diurnal flow near a mountain. 

compute local perturbing wind velocities for a spec- 
ified ground-fixed atmospheric volume (i.e. latitude, 
longitude and height ranges). This requirement facil- 
itates correlation between a wind model and a high 
fidelity atmospheric model without the same wind ef- 
fects being doubly applied or erroneously cancelled. 
Furthermore, DSENDS wind models shall maintain 
parameters that define the PCR-fixed region of in- 
fluence to which the wind model is valid. The wind 
model shall also provide a public function or object to 
return these parameters so that the perturbed wind 
velocity can be correlated with the planetary terrain 
for the same PCR-fixed volume. These parameters 
can either be hard-coded into the model or set by the 
user. The wind model shall have access to a func- 
tion or object that converts its PCR velocity vectors 
into the PCI frame, so that its output is compatible 
with the DSENDS environment. Since only perturba- 
tions are computed in DSENDS wind models, a wind 
model shall not be required for running a DSENDS 
EDL simulation. Spatial-temporal wind models have 
a set of ODE's that must be solve for the entire wind 
field throughout its PCR extent at  various grid points. 
The perturbed local wind velocity is then queried for 
a specific location. If the specified location was be- 
tween the model's grid points, the model interpolates 
the wind velocity from neighboring grid points. Such 
a model could be a large computational burden for 
DSENDS and may violate the real-time requirement 
for the DSENDS simulator. However, since such mod- 
els are desired for modeling localized wind effects near 
mountains, craters or valleys, DSENDS wind models 
shall have a bounded region of influence such that its 
computation overhead does not violate the DSENDS 
real-time constraints. In addition, DSENDS wind 
models shall have access to functions or objects that 
allow it to maintain continuous states and functions 
or objects that allow it interpolate between grid point 
solutions. 

The subsequent discussion will focus on the require- 

5 OF 

ments for implementing a simple spatial wind model, 
which should not preclude the implementation of more 
complex wind models. A perturbing wind model can 
be developed using a PSD that only varies with al- 
titude and does not require solving a set of ODE's. 
After the coefficients to the discrete Fourier series are 
computed, the wind model could take a PCI position, 
convert it into an altitude and compute the perturb- 
ing wind at that altitude. Additionally, truncating the 
Fourier series easily bounds the computational over- 
head of this wind model. Many of the variable used 
to compute the Fourier series (e.g. the fundamental 
frequency, number of harmonics, etc.) can be model 
parameters, thereby making such a wind model well 
suited for generic application. Consequently, DSENDS 
wind models shall use model parameters to increase 
the model's potential applicability in DSENDS EDL 
simulations. 

REQUIREMENTS FOR AERODYNAMICS 
MODELS 

Aerodynamic are modeled as a set of dimensionless 
coefficients that are relative to a body-fixed refer- 
ence frame on an aerodynamic system. The reference 
frame defines a coordinate system in which forces and 
moments are applied. This reference frame is very 
likely to be different from the mechanical reference 
frame. Therefore, aerodynamics models shall main- 
tain a transform that allows aerodynamic forces to be 
mapped from the aerodynamic reference frame into the 
mechanical reference frame of the aerodynamic sys- 
tem. 

The aerodynamic reference frame shall have the +x 
direction is along the axis of symmetry and is nomi- 
nally antiparallel to the freestream velocity when the 
total angle of attack is zero (i.e. +x points into the 
"wind"). The +y direction shall be defined as the 
"pitching axis" and shall point such that a positive ro- 
tation (i.e. counterclockwise) about +y shall produce 
a positive angle of attack. +z shall be the cross prod- 
uct of +x and +y. This definition of the aerodynamic 
reference frame is general and can be applied to any 
aerodynamic system. 

So far, the discussion on modeling requirements for 
DSENDS aerodynamics models has been general. The 
following discussion will focus on the requirements 
needed for modeling axisymmetric aerodynamic sys- 
tems. Axisymmetric aerodynamics models are a class 
of aerodynamics models that are not sensitive to an 
angular displacement and angular rate about the axis 
of symmetry. A seemingly limiting choice of aero- 
dynamic systems, axisymmetric aerodynamics models 
can be used to model most EDL aerodynamic subsys- 
tems (eg. entry vehicle, parachute, etc.). Therefore, 
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DSENDS development focused on developing these 
models, but the interfaces and design of the DSENDS 
atmospheric and wind models will not preclude future 
lifting body aerodynamics models. 

Although aerodynamic systems experience positive 
and negative total angles of attack, most aerodynamic 
coefficients databases for axisymmetric vehicles tend 
to  only list coefficients for positive angle of attack. 
This convention assumes that the aerodynamic forces 
and moments are applied in a frame such that the total 
angle of attack is positive. As a result, axisymmetric 
aerodynamics model shall determine its aerodynamic 
reference frame a t  runtime. The frame shall maintain 
+x along the axis of symmetry but +y shall be chosen 
such that the total angle of attack the angle is pos- 
itive; +y and +z directions will vary as the incident 
flow field. The transform maintained by the axisym- 
metric aerodynamics model shall be used to define the 
+x with respect to  the mechanical reference frame. 

Lastly, the axisymmetric aerodynamics model shall 
have access to functions or objects that allow it to  as- 
certain the 6 DOF inertial state of the aerodynamic 
system. Furthermore, the axisymmetric aerodynamics 
model shall have access to functions or objects that 
allow it convert its 6 DOF state knowledge into to- 
tal angle of attack within the aerodynamics reference 
frame. 

SOFTWARE ENGINEERING FOR ATMOSPHERIC MODELS 
INTERFACES 

In the following interface description, assume that 
the base data type for variables and arrays is a dou- 
ble precision floating point type (i.e. double) unless 
otherwise specified. 

The interfaces for DSENDS atmospheric models, as 
derived from its requirements, must have the following 
inputs and outputs. Atmospheric models shall have as 
its input: 1) a three element array for the PCI position 

Fig. 8 Atmospheric model interfaces 

of the aerodynamic system, 2) a three element array 
for the PCI velocity vector of the aerodynamic system, 
3) solar longitude for the planet, 5 )  a four element ar- 
ray for the quaternion that defines the transformation 
from the PCI frame to  the PCR frame and 6)  a three 
element array for the rotation rate of the PCR frame 
with respect to the PCI frame. And the output of a 
DSENDS atmospheric model shall be: 1) an unsigned 
integer that represents the address of the atmospheric 
model (i.e. a "this" pointer), 2) a local density, 3) 
a local pressure, 4) a local temperature, 5) the local 
specific heat ratio (i.e. ?) and 6) a three element ar- 
ray for the local wind velocity in the PCI frame. The 
justification for a "this" pointer output is made in the 
following section. 

IMPLEMENTATION 
DSENDS defines a C++ model class called flow 

model that only has a functional dependence on its 
input and has no continuous states (i.e. cannot define 
a derivative). The flow model class was chosen as the 
base class for DSENDS atmospheric models in order 
implement atmospheric models that have a functional 
dependence on its input. 

The DSENDS atmospheric models will communi- 
cate with the DSENDS aerodynamics models via in- 
herited class types called flowIns and flowouts. These 
types are defined in the DSENDS model base class, 
from which the DSENDS flow model class is derived, 
and allow DSENDS models to read and write data 
to signal buffers. Two DSENDS models can commu- 
nicate with each other if they are connected to the 
same set of signal buffers. Therefore, the DSENDS 
atmospheric model was implemented to read the PCI 
position and velocity vectors, the quaternion from PCI 
to PCR and the angular rate of the PCR frame from 
the following similarly named flowIns object: 

1. flowIns.positionPCI[3] 

2. flowIns.velocityPCI[3] 

3. flowIns.quatPCItoPCR[4] 

4. flowIns.ratesPCR[3] 
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And the atmospheric model was implemented to 
write its address, the local density, the local temper- 
ature, the local pressure, the local specific heat ratio 
and the local wind velocity in the PCI frame to the 
following similarly named AowOuts object: 

1. 

2. 

3. 

4. 

5. 

6. 

flowOuts.atmObject 

flowOuts.atmDensity 

flowOuts.atmTemp 

flow0uts.atmPressure 

flowOuts.atmHeatRatio 

flowOut~.atmWindPCI[3] 

The DSENDS atmospheric model outputs its ”this” 
pointer in order to associate it with a DSENDS aerody- 
namics model. The aerodynamics model is the forcing 
function on an aerodynamic system and in order for it 
to compute the proper forces and moments to apply, 
it must know the local atmospheric properties for the 
current inertial state of the aerodynamic system. As 
will be further elucidated below, the DSENDS atmo- 
spheric model will execute by a direct command from 
the DSENDS aerodynamics model (Le. via a pub- 
lic member function of the atmospheric model class). 
Upon receiving the execution command, it will read 
its input from the flowIns object and write the local 
atmospheric properties to its flowouts object. Hence, 
the aerodynamics model shall always have the correct 
local atmospheric properties, so long as the aerody- 
namics model and atmospheric model are connect to 
the same set of signal buffers and the aerodynamics 
model writes its PCI position and velocity prior to ex- 
ecuting the atmospheric model. 

SOFTWARE ENGINEERING FOR WIND MODELS 
INTERFACES 

In the following interface description, assume that 
the base data type for variables and arrays is a dou- 
ble precision floating point type (i.e. double) unless 
otherwise specified. 

As derived from its requirements, DSENDS wind 
models shall have the following interfaces for its inputs 
and outputs. The inputs of a wind model shall be: 
1) a three element array for the PCI position of the 
aerodynamic system, 2) a three element array for the 
PCI velocity vector of the aerodynamic system, 3) a 
four element array for the quaternion that defines the 
transformation from the PCI frame to the PCR frame, 
4) a three element array for the rotation rate of the 
PCR frame with respect to the PCI frame and 5) a 
three element array for the local wind velocity in the 

. I I 

Fig. 9 Wind model interfaces 

PCI frame (i.e. global atmospheric circulation). The 
wind model outputs shall be: 1) an unsigned integer 
that represents the address of the wind model (i.e. a 
”this” pointer) and 2) a three element array for the 
perturbed local wind velocity in the PCI frame. The 
justification for a ”this” pointer output is made in the 
following section. 

IMPLEMENTATION 
Unlike the atmospheric model, the DSENDS wind 

models were implemented using the DSENDS base 
class that has class types that allow the model to main- 
tain continuous states. The DSENDS sensor model 
base class was selected because it was assumed that 
the variations in the local perturbing wind velocity 
varies in time scales that allow it to be loosely cou- 
pled with the aerodynamic forces and moments (i.e. 
minutes or hours). Consequently, there is no need to 
solve simultaneously solve a wind model ODE and the 
equations of motion of the aerodynamic system. 

I .  

Fig. 10 Wind model interfaces 

The DSENDS wind models will communicate with 
the DSENDS aerodynamics models via inherited class 
types called flowIns and flowouts (see Software En- 
gineering for Atmospheric Models section for a de- 
scription of these types and their use). The DSENDS 
wind model was implemented to read the PCI posi- 
tion and velocity vectors, the quaternion from PCI to 
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. PCR, the angular rate of the PCR frame and the at- 
mospheric wind velocity from the following similarly 
named flowIns object: 

0 flowIns.positionPCI[3] 

0 flowIns.velocityPCI[3] 

0 flowIn~.quatPCItoPCR[4] 

flowIns.ratesPCR[3] 

0 flowIns. atmWindP CI[3] 

And the wind model was implemented to write its 
address, the local perturbed wind velocity in the PCI 
frame to the following similarly named flowouts ob- 
ject: 

0 flowOuts.windObject 

0 flowOut~.perturbWindPCI[3] 

The DSENDS wind model outputs its "this" pointer 
in order to associate it with a DSENDS aerodynamics 
model. The aerodynamics model is the forcing func- 
tion on an aerodynamic system and it must have the 
local wind velocity vector for the current inertial state 
of the aerodynamic system in order to correctly com- 
pute the freestream velocity vector and therefore the 
correct angle of attack. If a DSENDS wind model 
is connected to a DSENDS aerodynamics model, the 
DSENDS aerodynamics model will execute the wind 
model via a public member function of the wind model 
class. Upon receiving the execution command, the 
wind model will read its input from the flowIns ob- 
ject and write the local perturbed wind velocity to 
its flowouts object. The aerodynamics model must 
execute the atmospheric model prior to executing the 
wind model. If no wind model is connected (i.e. NULL 
address or address equals the atmospheric model ad- 
dress) the aerodynamics model will skip execution of 
the wind model and will simply read the wind velocity 
on its flowIns object. 

SOFTWARE ENGINEERING FOR AERODYNAMIC MODELS 
INTERFACES 

In the following interface description, assume that 
the base data type for variables and arrays is a dou- 
ble precision floating point type (Le. double) unless 
otherwise specified. 

As required, DSENDS aerodynamics models shall 
have the following input and output interfaces. The in- 
puts of a aerodynamics model shall be: 1) an unsigned 
integer that represents the address of the atmospheric 
model (i.e. a "this" pointer), 2) a local density, 3) a 
local pressure, 4) a local temperature, 5) an unsigned 

Fig. 11 Aerodynamic model interfaces 

integer that represents the address of the wind model 
(i.e. a "this" pointer), 6 )  a three element array for 
the local wind velocity in the PCI frame and 7) the 
6 DOF inertial state of the aerodynamic system. The 
aerodynamics model outputs shall be: 1) a three el- 
ement array for the PCI position of the aerodynamic 
system, 2) a three element array for the PCI velocity 
vector of the aerodynamic system and 3) the aerody- 
namic force and moment applied in the mechanical 
reference frame. The justification for the use of "this" 
pointers output is made in the following section. 

IMPLEMENTATION 
The DSENDS aerodynamics models were imple- 

mented using the DSENDS actuator model base class, 
which allows the model to apply forces and moments 
on the DSENDS dynamics model. 

The DSENDS aerodynamics models will commu- 
nicate with the DSENDS atmospheric models and 
DSENDS wind models via inherited class types called 
flowIns and flowouts (see Software Engineering for At- 
mospheric Models section for a description of these 
types and their use). The DSENDS aerodynamics 
model was implemented to read the address of the at- 
mospheric model, the address of the wind model, the 
local density, the local temperature, the local pressure, 
the local specific heat ratio and the local wind velocity 
in the PCI frame from the following similarly named 
flowIns object: 

0 flowIns.atmObject 

0 flowIns.windObject 

0 flowIns.atmDensity 

0 flowIns.atmTemp 

0 flowIns.atmPressure 

0 flowIns. atmHeat Ratio 

0 flowIns.localWindPCI[3] 
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And the aerodynamics model was implemented to 
write its PCI position and velocity vectors to the fol- 
lowing similarly named flowouts object: 

0 flowOuts.positionPCI[3] 

0 flowOuts.velocityPCI[3] 

The DSENDS aerodynamics model uses the ad- 
dresses of the DSENDS atmospheric model and the ad- 
dress of the DSENDS wind model in order to associate 
and communicate with them. After the aerodynamics 
model gets the 6 DOF inertial state of the aerodynamic 
system from the DSENDS dynamics model via a func- 
tion call, it extracts its PCI position and velocity and 
writes it to its flowout type, thereby providing inputs 
to the atmospheric and wind models. The aerodynam- 
ics model then proceeds to  check its flowIns type for 
valid atmospheric and wind model addresses. If the 
address of the DSENDS wind model is null, the aero- 
dynamics model skips execution of the wind model. 
However, if the address of the atmospheric model is 
null, the aerodynamic model will print a critical error 
message and force the DSENDS simulator to exit. 

After verifying that it is connected to at least a valid 
atmospheric model, the aerodynamics model executes 
the atmospheric model and then the wind model (if 
valid) using public member functions of the models. 
The aerodynamics model then reads the ambient at- 
mospheric conditions and wind velocity from flowIns 
type. The aerodynamics model then takes its inertial 
velocity and wind velocity to compute the freestream 
velocity and angles of attack. And then it uses the 
ambient atmospheric conditions and freestream veloc- 
ity to compute the Mach number of the aerodynamic 
system. If the aerodynamics model uses an aero- 
dynamic coefficient database, then the aerodynamics 
model must use some interpolation functions to deter- 
mine the aerodynamic coefficients for the given aero- 
dynamic system state. If the aerodynamic model uses 
some parametric aerodynamic coefficient model, the 
aerodynamic model then queries the coefficient model 
by some function call to get the salient aerodynamic 
coefficients. However the aerodynamics model accesses 
its aerodynamic coefficients, it takes the coefficients for 
the given angles of attack and Mach number and then 
computes the aerodynamic forces and moments to ap- 
ply to the aerodynamic system. 

TERRAIN MODELING 
Terrain models are used by DSENDS for a variety 

of purposes. These include monitoring the height of 
the spacecraft over the terrain, determining instru- 
ment field-of-views, generating sensor responses for 

Imaging, Lidar and Phased-Array Radar terrain sens- 
ing devices, evaluating the spacecraft kinematic and 
dynamic response during touchdown, and overall visu- 
alization of the simulation. The extent and resolution 
of the terrain needed by DSENDS varies during the 
descent profile. At entry, a large swath of terrain is re- 
quired at  coarse resolution. As the spacecraft descends 
narrower extents of terrain at  higher resolution is re- 
quired. Furthermore, the specific locations at  which 
the terrain is required also varies as a result of un- 
certainty in the spacecraft trajectory and pointing. 
For example, during hypersonic entry at Mars an un- 
guided spacecraft has an a trajectory uncertainty of 
typical1 over a 100 km. Similarly, during descent on a 
parachute, the pointing of the spacecraft can vary by 
many 10’s of degrees as the parachute interacts with 
the descent induced and atmospheric wind. A typical 
scenario of terrain usage is shown in Figure 1. 

The specific terrain models supported in DSENDS 
are Digital Elevation Maps (DEMS). This is essentially 
2.5 D data and suffices for most EDL simulation needs. 
The sources of the DEM data are varied. At one level 
is planet-wide data that may have been obtained by 
remote sensing from orbit. Such topographic data is 
available, for example, for Mars using the MOLA data 
set or for Venus using the Magellan data set. At an- 
other level is purely synthetic data. Such data, using 
fractal generation of landscape features such as craters 
and rocks overlayed on a base topography, is useful for 
performing system tests where real data is not avail- 
able. Such synthetic data is available from a variety of 
sources12.3 Finally, we have data that is intermediate 
between the two, where low-resolution real terrain is 
synthetically enhanced to high-resolution. Such data 
is available for certain specific landing sites of interest. 
In addition to DEM’s we must also mention data rel- 
evant to defining planetary geoid data. Geoid height 
is required to support atmospheric models. DSENDS 
supports both a DEM type representation of geoid 
data as well as those based upon a spherical harmonics 
expansion (cite Geoid paper). 

A brute-force approach to pre-load a DEM of an 
entire region at high-resolution is not feasible (e.g.a 
swath of terrain 200 km by 100 km at 10 cm reso- 
lution is well over 2 * lo1’ pixels). Instead a phased 
approach is required, where terrain patches are dy- 
namically loaded into the simulation based upon the 
needs of the particular phase of the simulation. The 
phasing requires a number of components: 

dynamic generation of terrain patches at  appro- 
priate resolutions 

0 Fetching of generated terrain for use by the sim- 
ulation 
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Loading into special memory to  facilitate real- 
time device response generation. Such loading 
and unloading must be transparent to the hard 
real-time process implementing the device sim- 
ulation. In DSENDS this is achieved by means 
of utilizing shared-memory segments between the 
real-time process and a another thread responsi- 
ble for terrain memory management. 

Look-ahead prediction of required terrain seg- 
ments to allow 

Generation, fetching and loading requests to be 
queued and terrain to be available in a timely 
manner 

the EDL simulator, and upload to the EDL simula- 
tor's memory. Each of processes identified has in-built 
delays that make timely access difficult. Fast genera- 
tion of terrain using multiple fast processors, timely 
transport of data using fast network hardware and 
protocols, and real-time buffer and shared-memory 
segment management within the simulator, are all in- 
gredients in achieving timely terrain access. Moreover, 
as the segments needed by the application change, suc- 
cessive terrain segments must be generated as needed, 
uploaded to the simulator, and placed into memory in 
a timely and seamless fashion. 

The Instrument Terrain Server (ITS) in the EDL 
simulator provides these functions to the various appli- 
cations in the simulator. It incorporates the following - 

DSENDS currently implements an Instrument Ter- 
rain architecture to support the needs identified above. 
The architecture is shown in Figure 2. 

functional ekments: 

The ITS has a number of real-time shared mem- 
ory buffers which contain overlapping terrain seg- 

TERRAIN INSTRUMENT SERVER 
Terrain products are required within the EDL sim- 

dation to support a number of applications such in- 
strument simulations, data monitoring modules, and 

ments. As the application requests terrain in the 
overlapping areas, buffers are switched in real- 
time to  allow the application to access terrain in 
the new segment in a seamless fashion. 

3-D visualization of the simulation. Examples of these 
are respectively, a terrain scanning Lidar instrument 
simulation, a monitor of the spacecraft height over the 
ground, and a 3-D view of the spacecraft approach to 
the landing site. The location, extent and spatial reso- 
lution of the terrain segments required to  support these 
applications varies and is a function of the boresight, 
field-of-view, and the fidelity desired. For example, a 
Lidar with a steering mirror could require terrain any- 
where within the field-of-regard provided by the mirror 
at a resolution that is a function of the instantaneous 
field-of-view (IFOV) of each pixel in the Lidar detec- 
tor. 4 monitor of spacecraft altitude would require 
a small terrain segment located vertically below the 
spacecraft. A mouse-driven viewpoint generator for 3- 
D visualization would require terrain anywhere in the 
scene as the simulation user moves the view-point. 

In all these cases terrain must be provided in a 
timely manner to the EDL simulator. This is es- 
pecially important during real-time operations where 
instrument responses must be generated in synchro- 
nization with a real-time clock with no possibility of 
cycle-slips and consequent data loss. The option of 
having all of the terrain resident in memory for im- 
mediate access by the requesting EDL application is 
not feasible because of the sheer size of the data set 
required. For example, a lOkm X 10 km site at 10 cm 
resolution would required storage of 1010 pixels ! In- 
stead, a process of terrain generation (or enhancement 
in the case of synthetically augmented natural terrain) 
must be combined with terrain segment transport to 

0 The ITS has a predictive model of terrain usage 
(called an Oracle) that allows it to  predict the ex- 
tent , resolution and extent of terrain segments 
required by the application. These predictive 
models are usually based upon a nominal EDL 
scenario and the current location and velocity of 
the ground "footprint" of the instrument/viewer 
field-of-view. 

0 The ITS uses the predictions from the Oracle, 
knowledge of terrain generation times, data trans- 
port times, and buffer sizes to sequence the gen- 
eration, transport and upload of appropriately 
overlapping segments of terrain into the EDL sim- 
ulator. The ITS manages the use (and reuse) of 
the real-time buffers, the extent of overlap, and 
provides a level of cache management (e.g. keep 
adjacent terrain segments in memory in case they 
are needed) to relieve the simulator from frequent 
interactions with the terrain generation/transport 
process. Note that terrain generation can take 
many seconds, transport is usually a fraction of a 
second, and buffer managementlswapping is done 
at  simulation rates e.g 50 ms. 

In addition the ITS provides backup terrain (with 
lower resolution and larger spatial extent) in case 
the generation/transport process fails to achieve 
the times predicted by its model, or if the Oracle 
prediction of anticipated application terrain re- 
quest turn out to be wrong (e.g. if an unexpected 
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spacecraft motion causes the Lidar steering mir- 
ror to hit a hard-stop and thereby cause the Lidar 
to suddenly be viewing a ground area far removed 
from the normal scenario). 

A prototype version of the ITS is operational in- 
corporating a Terrain software object, shared memory 
buffers that allow seamless ITS and application terrain 
buffer access, and a preliminary version of the Oracle 
(implement in Tcl). The ITS is being used to support a 
single instrument simulation application at  this point 
(the Lidar simulation). Planned work will allow the 
ITS to support multiple EDL applications and refine 
the Oracle’s predictive capabilities. 

AUTOMATION 
Maintaining multiple, independent or interdepen- 

dent states of various spacecraft components can be a 
daunting task, especially if the mission design is either 
in flux or not yet complete. An automated method 
which will simplify and partition the various control 
and data gathering functions involved with different 
components and mission phases is required. 

The design of the DSENDS State Machine develop- 
ment was driven by the need to  simplify dealing with 
different spacecraft stages as they separate, perform 
actions, or pass through different dynamic regimes. 
Since multiple, separate, spacecraft models can be ac- 
tive simultaneously, the state machine must maintain 
the state of each spacecraft or spacecraft component 
independently, and manage transitions between them. 

Our state machine was designed based on providing 
a subset of common capabilities in existing commercial 
products providing similar functionality. The primary 
abilities desired were 

Automatic execution of user-functions during 
state execution and state transitions 

User-provided functions for testing of state tran- 
sitions 

Multiple, simultaneous state capability 

Ease of definition and integration with DSENDS 

In addition, the GraphViz graph visualization pack- 
age was used to provide automatic display of the con- 
nectivity of the state machine, as well as to show the 
current active states in real time. Figure 12 shows an 
subset of the state machine driving the demonstration 
DSENDS simulation, showing names of the states and 
transition test functions, special functions like initial- 
ization (diamond) and termination of a state (rectan- 
gle), as well as the currently active states (green). 

i True 

I HtShldSepChk 1 HtShldSepChk 

1 I HS*mpactChk 
I 

I PDAltChk 
f 

Fig. 12 State Machine Visualization 

DSENDS batch processing capabilities are centered 
around performing automatic data collection for re- 
gression testing, trade-space analysis, and automated 
testing. The batch processor can parallelize execution 
of cases over a heterogeneous collection of intercon- 
nected processors, resulting in fast execution and data 
collection limited only by the number of processors 
avail able. 

The Batch Manager does for data collection what 
the DSENDS State Machine does for the simulation: 
it streamlines and simplifies the process of running 
simulations for the purpose of data collection and anal- 
ysis, and of generating answers to what-if questions. 
The batch manager provides a simple text-based in- 
terface that defines initial simulation states that are 
to be varied, like mass of spacecraft components, fule 
on board, entry angle, or spin rate. Then one defines 
the desired results to extract, which can range from 
fuel consumption, landing location, or landing error, 
to total horizontal delta-V. Finally, a list of available 
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Fig. 13 Sample Terrain 

CONCLUDING REMARKS 
REFERENCES 

‘Gaskell, R. W., Collier, J .  B.,  Hussman, L. E., and Chien, 
R. L., “Synthetic Environments for Simulated Missions,” IEEE 
Aerspace Conference Proceedings, Big Sky, Montana, March 
2001. 

2Gaskell, R., Collier, J., Husman, L. E., and Chen, R. L., 
“Synthetic Terrain for Simulated Missions developed in a col- 
laboration between Parallel Applications Technologies Group 
and Optical Navigation.” N.4SA Science Information Systems 
Newsletter, , No. 60, July 2001. 

3Lee, M., Weidner, R., and Lu, W., “Design-based Mission 
Operation,” XEEE Aerospace Conference, BigSky, Montana, 
March 2000. 

Fig. 14 Batch Manager Output Analysis 

resources on which to run the simulations is provided. 
The input and output categories both use user-defined 
readable names to identify the cases to run and the 
output data. 

The Batch Manager executes one simulation on each 
computer, then monitors the simulations and collects 
data as each completes. Once a resource is free, the 
next available case is run on it. This continues until all 
cases have been run and all data extracted, then the 
batch manager shuts down. Data is saved to an output 
file along the way, in case the process is interrupted. 

An example of the output is show in Figure 14. In 
this sample, a 1 by 2 km cratered area was gridded 
with desired landing sites (green plus). A detailed 
spacecraft model was used that included a guided pow- 
ered landing capability, with some hazard avoidance. 
A digital elevation map from the JPL MIPL labora- 
tory was used that corresponded to the imagery. The 
output picture combines fuel consumption contours 
(white lines) and deflection maneuvers (cyan lines). 
The output data also indicated which sites were infea- 
sible (red circles). 
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